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Figure 1: Using only fabric metadata as input (family, thickness, composition, density), or a flat image of the fabric if family information is
not available, our methods estimate the mechanical parameters of fabrics in a few seconds without the need of special digitization equipment
(left). Fabrics estimated this way show similar drapes to their ground truth counterpart, digitized using special testing devices producing
stretch and bending data in a process that can take hours (right).

Abstract
Estimating fabric mechanical properties is crucial to create realistic digital twins. Existing methods typically require testing
physical fabric samples with expensive devices or cumbersome capture setups. In this work, we propose a method to estimate
fabric mechanics just from known manufacturer metadata such as the fabric family, the density, the composition, and the
thickness. Further, to alleviate the need to know the fabric family –which might be ambiguous or unknown for nonspecialists–
we propose an end-to-end neural method that works with planar images of the textile as input. We evaluate our methods
using extensive tests that include the industry standard Cusick and demonstrate that both of them produce drapes that strongly
correlate with the ground truth estimates provided by lab equipment. Our method is the first to propose such a simple capture
method for mechanical properties outperforming other methods that require testing the fabric in specific setups.

CCS Concepts
• Computing methodologies → Computer vision; Neural networks; Computer graphics;

1. Introduction

Accurate and trustworthy digital garments, often referred to as dig-
ital twins, are key for the successful digitalization of the apparel

industry. From early prototyping in 3D Computer-Aided Design

(CAD) to custom fits in virtual try-on, digital garments have the

potential to transform a centuries-old industry to make it more effi-

cient while reducing its carbon footprint [BHL∗17].

In this context, digital textiles are largely responsible for how a

garment looks and drapes: they are the building blocks of digital

apparel. As such, the optical and mechanical properties of real fab-
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rics need to be carefully captured and digitized to faithfully repro-

duce a garment in the digital world. Yet, in an industry where the

transition to digital has become a necessity [HMR∗20, RI20], digi-

tizing textiles is a manual process, slow, and expensive [KLBG20].

It requires sophisticated equipment, a skilled workforce, and some-

times even shipping fabric swatches to a lab across the world. These

complex pipelines make it difficult for the apparel industry to meet

market demands, which often require digitizing hundreds of tex-

tile materials within tight time-frames [BHL∗17]. The result is a

slowdown in the adoption of digital tools by the industry or, even

worse, trading accuracy for practicality by choosing from limited

preset pools of digital fabrics.

While there are practical solutions for optical digitiza-

tion [RPDEPHG23, MRR∗22], efficient mechanical digitization

has been a less explored research area. Mechanical digitization of

fabrics has traditionally required the use of specialized testing de-

vices [KLBG20, Kaw80, Min95] and skilled operators. Therefore,

several techniques have attempted to simplify the process by using

videos [BJNX18, DBC∗15, HEW17] or photographs of the fabric

under specific conditions [RPPMCG23, JC20, FHXW22] as input

data to derive mechanical properties. Despite these efforts, these

methods still require specific hardware and laborious manipula-

tions.

To address these limitations and inspired by recent work in the

field of optical digitization, which demonstrated that a single image

is sufficient to estimate the optical appearance of materials [RPDE-

PHG23, MRR∗22], we propose a method that avoids the use of

specialized hardware, requiring only the manufacturer metadata as

input. Our key observation is that the fabrication process and the

underlying yarn materials have a high influence on the macro-scale

mechanical behavior of the fabric [Sül12, HC98, Das13]. As an il-

lustrative example, the straight yarn arrangement in woven fabrics

leads to very stiff stretch properties in the warp and weft directions,

while the curved yarn loops present in knitted fabrics allow for ad-

ditional stretching as the yarns become straightened [GO18]. Many

other relations have been documented, such as the influence of dif-

ferent woven and knitted families on the stretch and bending prop-

erties of the fabric [BM22,AG20,SA∗17,CA00] or the effect of dif-

ferent yarn materials on the resulting fabric mechanical properties

[Elt16, HC98, SEHEY12, MEA12, KCPN16, Ery19, EGBDC09].

In this work, we introduce two complementary methods that

build on this idea. First, we propose a method that regresses the

fabric mechanics by taking as input only textile metadata: family,

composition, density, and thickness. The first two are typically pro-

vided by the manufacturer, while the last two, if not readily avail-

able, can be easily measured using ordinary off-the-shelf tools. We

show that using only this information as input we are capable of

estimating the mechanical properties of a large and diverse set of

fabrics.

Obtaining the fabric family can be challenging for nonspecial-

ists who do not have access to the complete manufacturer technical

sheet. Our second method addresses this issue by using planar front

and back images of the fabric, instead of the fabric family. We train

an end-to-end approach using a neural network to directly regress

the mechanical parameters, which yields results comparable to our

first solution.

We evaluate both of our methods using quantitative error metrics

in the parameter spaces, and an ablation study on the importance

and sensitivity of each input to the models. However, we also make

the observation that using mechanical parameters as error metric

struggles to quantify differences in drape, since the particularities

of the simulator can make two sets of parameters behave similarly

in practice. Therefore, we turn to the Cusick Drape test [ISO08], an

industry standard to further understand the accuracy of our method

from a perceptual standpoint. To the best of our knowledge, we are

the first to provide such an evaluation. In addition, we take a closer

look at the resulting models by analyzing them in specific cases

to show that they learn nonlinear effects described in the textile

literature.

2. Related Work

In this section, we discuss methods for estimating mechanical pa-

rameters of textiles using testing devices, videos, and photographs.

We also survey methods for estimating appearance from single im-

ages.

2.1. Mechanical Digitization Methods

Evaluating the mechanical properties of real fabrics is a complex

task that usually follows a two-step process: acquiring the raw data

that captures the mechanical behavior of the fabric, and then us-

ing it to derive mechanical parameters for a specific simulator. This

derivation is, in practice, simulator-specific: in addition to the ma-

terial model, each simulator makes a number of implementation

choices such as the type of discretization and its resolution, or the

lenience of convergence thresholds, which can significantly influ-

ence the simulation’s behavior. The raw data capture is usually

done using specialized mechanical testing devices, but there is an

increasing research focus on using videos or photographs of the

fabric instead.

Digitization using testing devices. The use of testing devices is

by far the most common approach for textile digitization in the ap-

parel industry [KLBG20]. Most commercial 3D CAD for apparel

can derive mechanical parameters from specific devices for their

specific simulator. These devices are often manufactured and sold

by the same companies developing the 3D CAD software itself.

Some of the most common devices available in the industry

are the Kawabata Evaluation System (KES) [Kaw80], the Fabric

Assurance by Simple Testing (FAST) [Min95], the Fabric Touch

Tester (FTT), the CLO Fabric Kit 2.0 [Clo], the Fabric Anal-

yser by Browzwear (FAB) [Bro] and the Optitex Mark 10 [Opt].

They measure stretch resistance based on uniaxial stretch tests, and

bending resistance through cantilever, pearloop or similar meth-

ods [CPGE90]. Once the raw data is generated, usually as se-

quences of force-deformation datapoints, an estimation method can

be used to derive mechanical parameters from it [MTLVL07,SB08,

VMTF09, WOR11, MBT∗12, CTT17]. The objective is to find the

best values for the set of parameters that can accurately explain the

raw data when using a specific simulator.

Using a testing device is arguably the best way to obtain the me-

chanical parameters of a fabric: the specimen itself is tested, ex-

citing the exact deformation modes that need to be characterized.
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Figure 2: Distribution of our dataset. Left, distribution of families for woven and knit structures. Middle, main composition: percentage of
fabrics that contain a given composition; full sorted: percentage of fabrics with mixed compositions. Right, histogram of distributions for
density and thickness.

However, this approach comes with many drawbacks, mainly from

the need to manipulate complex sophisticated machines, which

makes the process slow, manual, and expensive while requiring

skilled operators. In addition, it has been observed that two testing

devices can produce different results for the same fabric [Pow13],

suggesting that even a machine-based approach is not infallible and

questioning the very nature of the ground truth. To make matters

worse, the lack of consensus on standardized simulation models

and mechanical tests [KLBG20, Pow13] results in a sort of vendor

lock-in. One device is often tied to one CAD, and both raw data

and mechanical parameters cannot be interpreted by other CADs,

which poses a challenge for interoperability. Recent standardiza-

tion efforts are trying to address this issue, both by providing some

documentation on vendor-specific mechanical parameters [Sub21]

and by encouraging the distribution of raw data in an open for-

mat [u3m], but with limited adoption so far.

Digitization from visual input It is possible to obtain the mechan-

ical parameters in a less constrained setup, eliminating the need

to use specialized hardware and some of the drawbacks that come

with it. Video and photographic sources of data can convey abun-

dant mechanical information when the fabric is deformed in the

right way. While all methods necessarily rely on doing simulations

(we recall that the mechanical parameters are specific to a given

simulator), we separate the literature in two categories, each with

their own pros and cons: methods that embed simulation steps into

the parameter estimation process, and methods that use simulation

as a preprocess to build a dataset and learn from it.

In the first category, simulation-optimization methods, simula-

tion is used during parameter estimation in an iterative loop to re-

fine the mechanical parameters until an objective function is sat-

isfied, which is also the method of choice when using data from

testing devices [SB08, WOR11, MBT∗12]. Yang et al. [YPA∗18]

take a single-view image of a garment, and run a joint material-

pose estimation of the textiles and the avatar, comparing the lo-

cation and density of wrinkles and folds of the garment between

the photograph and successive simulations to refine the mechanical

parameters. Bhat et al. [BTH∗03] take a real video sequence of a

fabric swatch hanging by its corners under gravity, and uses fold

information to optimize a match with simulated video sequences.

Similarly, Runia et al. [RGSS20] extract wave information from

real and simulated video sequences of flapping flags as a metric to

optimize the mechanical parameters of the simulation.

In the second category, simulation as preprocess, regression

methods are used on simulated datasets to directly learn the de-

formation space and encode it as a latent feature vector. The me-

chanical parameters of cloth have been inferred using video data as

input [BXBF13, YLL17, BJNX18], while friction can be obtained

using photographs that encode reflectance [ZDN16] and videos of

the cloth sliding through a surface [RRBD∗20]. Pure data-driven

methods such as Huber et al. [HEW17] find the most similar cloth

in a dataset using a descriptor that encodes motion. Ju et al. [JC20]

used manually labelled Cusick drape 3D boundaries as input, which

Feng et al. [FHXW22] later automatized by using multiple-view

depth images. Similarly, Rodriguez-Pardo et al. [RPPMCG23] use

depth images of the fabric hung in a specific configuration and a

neural network to analyze them and estimate the mechanical pa-

rameters.

Inspired by these methods, and taking it a step further, our ap-

proaches only require the metadata of the fabric and, optionally, flat

images of the front and back sides of the sample. This removes the

need to manually setup and capture the fabric in mechanically ex-

pressive configurations, or even having physical access to the fabric

itself.

2.2. Single Image-based Appearance Estimation

Our approach also draws from current trends in the field of opti-

cal material capture. Although several approaches include variable

illuminations [AWL∗15] or multiple images as input [DAD∗19],

many methods have demonstrated very reasonable accuracy tak-

ing as input just a single image with fixed illumination [MRR∗22,

HDMR21,LDPT17,LSC18,DAD∗18,WWZ∗22,GLT∗21,VPS21,

ZK21]. For the particular case of textiles, recent work [RPDE-

PHG23] achieves very low error rates with a single diffuse image

taken with a flatbed scanner. This scenario suggest that the seman-

tics of the material –that can be observed in a single image– is a

valuable cue to disambiguate its optical appearance properties. We

demonstrate that a similar reasoning can be applied for mechanical

properties, given that the woven/knitting pattern is key to determine

the fabric’s mechanical behavior.
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Figure 3: Fabric digitization pipeline used to generate the dataset.
The fabrics are mechanically tested with proprietary stretch and
bending machines, obtaining raw mechanical data. Then, an auto-
matic optimization process finds the simulation model parameters
that best fit the data. Lastly, the digitized fabric is validated by com-
paring it to real photographs.

3. Overview

Our goal is to digitize fabrics without requiring to manipulate a

fabric sample. To this end, we follow a learning-based regression

approach that avoids the need to perform complex simulations or

building specific setups by taking the fabric metadata as input.

We gather a dataset of textile materials that we digitize with pro-

prietary lab testing equipment. Section 4 describes the contents of

the dataset, the process to build it, and the simulation engine behind

it.

Section 5 introduces our two complementary solutions to es-

timate the mechanical parameters. Our first method, MECHMET,

works by using only the manufacturer metadata: density, thickness,

percentage of compositions, structure type, and family. Our second

method, MECHIM, eliminates the requirement to know the fabric

family by using front and back planar images of the fabric sample.

We evaluate our methods using standard error metrics, but also

with perceptual metrics used by the textile industry. Section 6 de-

scribes these metrics and motivates their importance for this prob-

lem. Section 7 presents an exhaustive evaluation of our methods,

including an ablation study, several quantitative and qualitative re-

sults, and comparisons to the state-of-the-art. Finally, in Section 8

we analyze the learned models to compare their behavior to differ-

ent observations documented in the textile literature.

4. Dataset

We carefully collected a curated set of 1565 real fabrics from a

wide variety of families, densities, compositions, and thicknesses.

The curation and labeling was done by textile specialists that guar-

anteed that the set and data was representative of the textile mar-

ket. Each fabric sample contains information regarding metadata,

digital images, and simulation parameters. The dataset has been re-

leased [dat] and is freely available for academic use. An extended

version of the dataset (including a full texture stack and mechani-

cal parameters for third party vendors) is available at SEDDI Tex-

tura [tex].

The metadata is composed of density (gsm) ρ ∈ R, thick-

ness (mm) t ∈ R, percentage of compositions c ∈ R
|C| where

C = {WOOL, POLYESTER, ANGORA, CASHMERE, RAMIE, MOHAIR,

NYLON (POLYAMIDE), RAYON, METALLIC, POLYURETHANE (ELAS-

TANE), BAMBOO, VEGETAL FIBRE, ACETATE, ALPACA, COTTON, SILK,

ACRYLIC, HEMP, MODAL, FLAX }, structure type s ∈ {WOVEN,KNIT},

and family f which is different for knits f ∈ {INTERLOCK, FRENCH

TERRY, FLEECE, BRUSHED BACK FLEECE, VELOUR, TRICOT, RIB,

PIQUE, MILANO, MESH, JERSEY, JACQUARD } and for wovens f ∈ {
PLAIN, PILE, JACQUARD, CREPE, SATIN, TWILL}. Figure 2 (left)

shows the resulting family distribution for knits and wovens. In

the middle, we show the distribution of compositions. It is worth

noting that our main compositions chart agrees with recent reports

of fiber type production and usage [Fer21, Tex21] that state that

the majority of fabrics are made of cotton and polyester, followed

by rayon and nylon. In the chart full sorted we can observe pairs

of compositions that are usually tied together, which is important

to understand potential biases in the data. Then, we took front and

back planar images of 11x11cm swatches of the fabric using a com-

modity flatbed scanner at 400 DPIs.

Finally, we mechanically digitized each fabric using proprietary

testing equipment and methods. Our digitization process, illus-

trated in Figure 3, has two steps. In the first step, we capture raw

stretch and bending mechanical data in the three main fabric di-

rections (warp, weft and bias), following digital textiles industry

practices [KLBG20]. This raw data consists of force-elongation

measurements of uniaxial stretch tests, and fabric folding outlines

of pearloop bending tests [CPGE90]. In the second step, we run

numerical optimizations to obtain the mechanical parameters that,

together with the fabric density and thickness taken from the meta-

data, govern our simulation methods. For this, we use the same me-

chanical simulator that will be later used to run fabric simulations.

Our simulator uses the Finite Element method to discretize the un-

derlying equations of motion over a triangular mesh, and a Newton-

Raphson Backward Euler solver to timestep the dynamic simula-

tion. We use the Saint-Venant Kirchoff (StVK) hyperelastic energy

to model resistance to stretch [VMTF09] with a quadratic strain

and a linear strain/stress relationship, and a discrete hinge energy

to model resistance to bending [GHDS03, BMF03]. Both energies

are made anisotropic, a natural property of most fabrics, by using

different parameters, namely, kSWarp, kSWeft, kSBias for stretch and

kBWarp, kBWeft and kBBias for bending in the warp (0º), weft (90º),

and bias (45º) directions, respectively. The bending model is pa-

rameterized by a single stiffness value, so we introduce anisotropy

by assigning an interpolated stiffness parameter to each hinge based

on its orientation in the reference configuration [WOR11].

We consider this data to be our ground truth, and will use it

to train our learning-based models. However, the models we pro-

pose are agnostic to the underlying simulator and could be trained

on datasets with different mechanical parameterizations. Figure 3

(right) compares photographs of fabric swatches under different

drape conditions with their digital replicas. These comparisons

were used during the generation of the dataset to qualitatively vali-

date the accuracy of each fabric digitization.
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Figure 4: Diagram showcasing the two inference models proposed
in this work. Notice that MECHMET requires the fabric family as
input while MECHIM replace that input with front and back images
of the fabric.

5. Methods

Estimating a set of real numbers given a variable number of in-

put parameters can be posed as a classic regression problem given

a dataset sufficiently large to cover the parameter space. Here we

describe our two methods designed to take two different types of

inputs, while low level implementation details are described in the

Supplementary Material.

5.1. MECHMET: Metadata Only as Input

An efficient way to learn a parameter regressor is through the

use of Random Forests Regressors (RFR). RFRs are fast to train

and evaluate, and can handle both numerical and categorical in-

puts. Although we experimented with Multi-Layer Perceptrons and

achieved similar accuracy, as shown in Section 7, we ultimately

chose a Random Forest Regressor for its efficiency. Since the cor-

relation between stretching and bending parameters is not signifi-

cant [RPPMCG23], we train two independent regressors for stretch

and bending parameters. Nevertheless, we also experimented with

a single regressor for both sets obtaining less precision in the esti-

mations.

5.2. MECHIM: Images and Metadata as Input

Our second solution eliminates the need to have prior knowledge

about the fabric family, hard to obtain if not present in the fab-

ric technical sheet and without an expert eye. Instead, this solution

takes as input the front and back images of the fabric.

In this setup, a RFR is not sufficiently expressive to take raw

images as input. Therefore, we use an end-to-end neural network.

The overview of the architecture is presented in Figure 4 (bottom).

First, we stack front and back images as a 6-channel input and ex-

tract a feature vector from a pre-trained neural network that serves

as feature extractor. This neural network will be fine-tuned during

the learning process. The feature vector is then passed through a

fully-connected layer (FC) to reduce its dimensionality. While this

feature vector is similar to the last layer of a classifier, we have

found that explicitly estimating the fabric family gave worse re-

sults than implicitly learning fabric features during training (even

if our family categorization is reasonable and validated by industry

experts, there might be fuzzy categories for which a rigid classifica-

tion is not advantageous). Afterwards, the resulting feature vector

is concatenated with the available metadata (density, structure type,

thickness, and compositions) and passed through an MLP that re-

turns the simulation parameters. As before, we train one network

for bending and another one for stretch.

In addition, we reduced the dimensionality of the compositions

to two dimensions with another MLP learned through the same pro-

cess. This comes from the empirical observation (Figure 5) that

such size reasonably covers the variability of our dataset. Note that

we do not perform such reduction in our first model due to the im-

possibility to learn the parameters of the reduction from the data in

an end-to-end fashion.

Co on
Elastane 0%

Co on
Elastane > 0%

Polyester
Elastane 0%

Polyester
Elastane > 0%

Nylon

Rayon

Flax

Figure 5: Visualization of the dataset after projecting it to two di-
mensions using tSNE [VdMH08], a dimensionality reduction tech-
nique. We observe that samples with and without elastane for the
dominant compositions (cotton, polyester) are separated.

6. Cusick Drape Metrics

The natural way to quantitatively analyze the accuracy of our mod-

els is to measure the error in the parameter space (i.e. the six me-

chanical parameters that describe each fabric). However, as also

discussed in previous work [RPPMCG23], these parameters are

more related to the internals of the simulator rather than the per-

ceived fabric behavior: they can be misleading when it comes to

assessing the accuracy of the fabric drape, which is ultimately what

matters to the garment designer. Figure 6 illustrates this phenom-

ena. Two fabrics with significantly different mechanical parameters

result in very similar drapes: the bending parameters of the fabric

© 2024 The Authors.
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Figure 6: Two fabrics with very different mechanical parameters:
3x in density, up to 7x in stretch, and up to 8x in bending. Yet
their Cusick drapes are virtually identical, showing that differences
in mechanical parameters don’t necessarily reflect differences in
drape.

on the right are up to 8 times the ones on the left, yet the draping is

virtually identical. There are many factors that can contribute to this

phenomenon, including cross effects between stretch and bending,

low sensitivity to changes at both ends of the parameter range, and

even eventual limitations of the simulator itself.

To address this problem, we use the Cusick Drape test [Cus65,

ISO08], an industry standard for measuring the drape of a fabric.

The Cusick test is easy to apply to digital fabrics and provides a set

of quantitative values that are easy to interpret in terms of the fab-

ric’s qualitative behavior. Additionally, it allows for comparisons

between digital fabrics regardless of the underlying simulator.

In the Cusick Test, a circular piece of fabric of 30 cm in diame-

ter drapes under its own weight over a supporting disk of 18 cm in

diameter. Using this setup it is possible to compute several metrics.

The Drape Coefficient (DRPct), expressed in terms of percentage,

is the ratio between the area of the outline of the draped fabric and

the area of the circular flat piece. The lower the number, the higher

the drapability. Many other indicators can be extracted from the Cu-

sick test: Carrera-Gallissà and collaborators [CGCV17] identified

36 different ones in the technical literature. However, after carefully

assessing the performance of each indicator, they suggest to focus

on the Drape Coefficient first, followed by the Mean Fold Num-
ber (FN) and the Fold Height (FH) to discriminate among drapes.

The latter are respectively the number of folds of the outline and

the average height of those folds (in mm). We therefore augment

the analysis of our models with the three aforementioned Cusick

Drape metrics.

7. Evaluation and Results

In this section, we present a quantitative analysis of the perfor-

mance of both models using different evaluation metrics. Addition-

ally, we conduct an ablation study of the input parameters. Then,

we showcase several results and compare the performance of our

method with related work.

7.1. Quantitative Evaluation

We use common metrics to numerically evaluate the quality of our

models and industry standard metrics to understand drape as de-

scribed in Section 6. We split our dataset in 1371 fabrics for training

and 194 for testing.

First, we use the Normalized Mean Absolute Error (NMAE) and

the Spearman correlation metrics to understand the error in the pa-

rameter space. For the computation of the NMAE, we performed a

min-max normalization with the maximum and minimum values of

the training set, effectively normalizing the data to the [0,1] range,

which we then multiplied by 100 to get a percentage. This scaling

helps us analyze and interpret the results since mechanical parame-

ters in simulators can have arbitrary ranges (e.g., note the 8 order of

magnitude scale difference between stretch and bending values in

Figure 6). With this normalization, we transform the errors to more

comprehensible values.

The errors shown in Table 1 indicate that the average error in pa-

rameter space is below 6% for the average kSavg of the three stretch

parameters and 12% for the average kBavg of the three bending pa-

rameters. Using the fabric family or images as input does not have a

significant impact on the estimation of stretch parameters, although

using the family as input improves the estimation of bending pa-

rameters. This suggests that our family taxonomy contains seman-

tically meaningful information that may not be immediately visible

in the scanned images. It appears that stretch parameters can be

more easily identified even if the exact fabric category is unknown.

Interestingly, the stretch bias parameter seems to be the most chal-

lenging to estimate given our input. We speculate this is a con-

sequence of the underlying stretch model in our simulator. While

kSWarp and kSWeft are orthogonal, kSBias modulates the shear prop-

erties of the fabric [VMTF09]. This effectively makes the stretch in

the bias direction depend on the warp and weft parameters as well,

forcing regression approaches to infer this more complex relation.

To complement this analysis we also measure the error using the

Cusick Test. As previously mentioned (Section 6), these metrics

evaluate the drape accuracy in a global and more meaningful way.

Tables 1 and 2 report very similar performance between our two

models, although MECHMET slightly outperforms MECHIM in all

the Cusick metrics. We refer the reader to the supplementary mate-

rial for a comparison of the virtual Cusick drapes of a varied set of

fabrics, showing the ground truth against the results of MECHMET

and MECHIM.

7.2. Per Family Analysis

We also evaluate the error per family for a more in-depth analysis.

The results are shown in Figure 7. We observe that both models

perform similarly, particularly for bending parameters. MECHIM

struggles with certain classes that are complex to identify in the

images such as Twill or Milano which can have very small yarns or

be similar to other categories. Plain and Twill groups have the high-

est variability of errors. This might indicate that splitting them in

more specialized sub-families could help improving the accuracy.

Finally, both models struggle with families that are under repre-

sented in our dataset, such as Crepe or Fleece.

7.3. Ablation Study

Table 1 and Table 2 include an ablation study on the input pa-

rameters. We study how removing specific inputs impacts the ac-
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Params NMAE Cusick MAE

kSWarp kSWeft kSBias kBWarp kBWeft kBBias kSavg kBavg DRPct FN FH

MECHMET
RFR w/o images 6.15 7.52 4.14 11.26 12.35 8.80 5.94 10.80 9.73 0.86 3.02

NN w/o images 6.17 7.71 4.00 11.30 12.90 9.10 5.96 11.10 9.94 0.91 3.33

MECHIM

FULL 6.31 7.47 4.18 11.81 12.03 9.53 5.99 11.12 10.14 0.89 3.20
w/o front 7.14 8.76 4.51 12.95 12.55 10.49 6.80 12.00 10.78 0.96 3.31
w/o back 7.05 8.42 3.92 13.16 13.35 9.92 6.46 12.14 10.55 0.99 3.29

w/o compositions 6.94 8.47 4.42 12.10 12.52 11.37 6.61 12.00 12.81 1.15 3.71
w/o thickness 6.20 7.99 4.06 13.25 12.96 10.45 6.08 12.22 11.40 1.07 3.55

w/o density 6.17 7.75 4.29 12.23 12.54 10.79 6.07 11.85 11.50 0.99 3.56

Table 1: Absolute errors of our models with ablation study. Left, error estimates in the mechanical parameter space using NMAE. Right,
MAE errors using Cusick metrics.

Params Spearman Cusick Spearman

kSWarp kSWeft kSBias kBWarp kBWeft kBBias kSavg kBavg DRPct FN FH

MECHMET
RFR w/o images 0.67 0.70 0.56 0.71 0.72 0.76 0.64 0.73 0.70 0.50 0.62

NN w/o images 0.68 0.69 0.59 0.74 0.72 0.76 0.65 0.74 0.74 0.55 0.68

MECHIM

FULL 0.64 0.71 0.54 0.66 0.66 0.73 0.63 0.68 0.66 0.49 0.57
w/o front 0.61 0.64 0.36 0.66 0.67 0.70 0.54 0.68 0.62 0.52 0.54
w/o back 0.63 0.74 0.62 0.60 0.60 0.69 0.66 0.63 0.61 0.40 0.56

w/o compositions 0.60 0.66 0.34 0.58 0.57 0.66 0.53 0.60 0.48 0.39 0.42
w/o thickness 0.63 0.66 0.44 0.60 0.58 0.67 0.58 0.62 0.59 0.33 0.53

w/o density 0.65 0.69 0.46 0.58 0.57 0.63 0.60 0.59 0.57 0.46 0.50

Table 2: Correlation coefficients (Spearman) between ground truth and estimated mechanical parameters, as well as between their respective
Cusick metrics, for our models and the ablation study.

Figure 7: Normalized kSavg and kBavg errors of all the fabrics per
family, sorted by increasing median family error.

curacy of the prediction. The study was done using our MECHIM

model for convenience but our findings extrapolate to the MECH-

MET model. Starting from a full model that takes all data as input,

we remove components while keeping the same architecture. The

results show that removing the input images has the biggest impact

in performance. Interestingly, removing the back image has more

impact that removing the front, which indicates that the back might

be more discriminative of the fabric type. However, when looking

at the Cusick metrics we observe that the composition is the most

important property to take into account, followed by the thickness

and the density. As mentioned in Section 6, this suggests that linear

errors in parameter space are not determinant to evaluate the accu-

racy of the model from a perceptual perspective. Removing density

or thickness has similar effects, which aligns with our observation

that density and thickness are highly correlated (0.9 in Spearman

coefficient).

7.4. Qualitative Evaluation and Comparison with Related
Work

We compare our models with the method (Mech from Depth) of

Rodriguez-Pardo et. al. [RPPMCG23] that uses depth images of

the fabric hung in specific setups. We used their train/test split for

the comparisons and metrics, which left us with only 10 fabrics for

test.

Figure 8 summarizes the results of the comparison. MECHMET

outperforms MECHIM and Mech from Depth [RPPMCG23] when

looking at the drape coefficient metric. This is perceptually vis-

ible in the Cusick drapes of the figure. The error in mechanical

parameters is very similar among all the models except for fabric

ID-0234 that performs very poorly for stretch in the method Mech
from Depth. Interestingly, this error is not as perceptually visible

in the Cusick drapes, nor correlates with the error of the Drape

Coefficient (DRPct). This signals the potential bias of the Cusick

test towards bending properties while overlooking stretch, aligning

with previous observations [FHXW22].

Our model MECHIM particularly struggles with fabrics ID-

0191, ID-0234, and ID-0115 for different reasons: ID-0191 has

© 2024 The Authors.

Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



8 of 12 H. Dominguez-Elvira et al. / Practical Methods to Estimate Fabric Mechanics from Metadata

Figure 8: Comparison with related work. Top: absolute errors for Cusick Test and NMAE for mechanical parameters. The fabrics are sorted
by increasing error in the drape coefficient (DRPct) of our MECHMET model, which seems to be the best performing one. In light of these
results, it appears that the prior information of the fabric family is a strong signal to understand fabric mechanics. Bottom: comparison
between ground truth (GT) and the different methods (MECHMET, MECHIM, and [RPPMCG23]) for the test set of [RPPMCG23].

very thin yarns barely visible in the images, ID-0234’s back has

unusually high hairiness for a single jersey fabric, thus confusing

the algorithm when trying to recognize its family, and ID-0115 is

a very shiny lining fabric which looks like a satin in the image.

The test set of [RPPMCG23] is very small, making the results

particularly sensitive to its contents. For more comprehensive qual-

itative results, we compared our methods with ground truth for our

test set of 194 fabrics. This qualitative evaluation can be found in

the supplementary material. In addition, in Figure 12 we show dif-

ferent examples of the same dress made with two different fabrics:

a stiff denim and a soft interlock. For each fabric, we show the re-

sults using ground truth data and both of our methods (MECHMET

and MECHIM), with almost indistinguishable drapes.

8. Model Inspection

In this section, we identify specific behaviors documented in the

scientific textile literature and replicate them by modifying the rel-

evant input parameters in our model. We compare the results in

an effort to gain a better understanding of the model’s ability to

capture the particularities and nonlinear interactions between the

fabrication parameters and the resulting mechanical behavior.

Only one relevant input parameter is changed in each case, leav-

ing the rest frozen through the sampling. We acknowledge this is

not an ideal setup since the input parameters are not always orthog-

onal (e.g., changing the family of a knitted fabric using the same

yarn is likely to change its thickness too), but given the impossi-

bility to obtain all the ground truth metadata for all the evaluated

input samples, we resort to this simpler, more controllable approach

and validate if the documented trends are observable. We focus the

analysis on the MECHMET model for the same reason. A similar

study could be devised for MECHIM, but would require a careful

treatment to avoid conflicting matchings between the input images

and the rest of the metadata.

Elastane on Stretch. One well documented case is the effect of

elastane in different fabric families. When applied to denim (i.e.,

twill) fabrics, elastane is typically introduced in the weft yarns,
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Figure 9: Effect of changing the family of randomly sampled dataset knit fabrics (sorted by density on the horizontal axis) on the output
mechanical parameters. The Rib samples tend to decrease resistance to stretch in the weft direction while increase bending resistance in the
warp direction w.r.t. the other families, most notably in the denser samples. Pique samples, on the other hand, show slightly higher stretch
resistance w.r.t. their Jersey counterparts.

Figure 10: Effect of changing elastane percentage of randomly
sampled dataset jersey and twill fabrics on the output mechanical
parameters. As elastane increases in jersey fabrics, the resistance
to stretch is decreased in warp and weft directions, but more no-
tably in the warp direction. A different effect is observed in the case
of twill fabrics, for which the stretch resistance decreases only in
the weft direction.

making the fabric stretchier in that direction [KCPN16, Ery19,

EGBDC09]. When applied to jersey knits, the effect is notable

in the warp direction and, since the weft stretch is dominated by

the straightening of the knitted yarns, the effect of elastane in weft

stretch can be less significant [Elt16].

We replicate these cases by selecting several twill and jersey

fabrics from our dataset with 100% cotton or polyester compo-

sition and sweep the composition to reach 6% and 14% elastane

for the twill and jersey samples, respectively. Figure 10 shows the

output of the model for the stretch parameters, showing that these

nonlinear, family-dependent effects, are implicitly captured. Note

that the model captures the direction-dependent effects even though

our composition input does not discriminate among warp and weft

compositions of woven fabrics.

Rayon on Bending. Another well documented effect is that of

rayon on bending. In particular, woven fabrics with rayon have sig-

Figure 11: Effect of changing rayon percentage of randomly sam-
pled dataset woven fabrics on the output mechanical parameters.
As rayon increases, a clear trend appears, reducing bending resis-
tance in all directions, most notably in originally stiffer fabrics.

nificantly lower bending rigidity than equivalent fabrics with cot-

ton [HC98,Cus65]. Again, we select a few woven fabrics of differ-

ent families with 100% cotton composition and sweep the compo-

sition to reach 100% rayon.

Figure 11 shows the bending parameters output by the model for

the sampled fabrics, showing the notable decrease in the bending

parameters as the rayon increases.

Knit Families. The effects of fabric family and mechanical prop-

erties has also been extensively investigated and documented. One

significant difference is found between jerseys and ribs, the latter

being easier to stretch in the weft direction due to the rest configura-

tion induced by the particular stitching pattern [SA∗17]. The same

structural properties lead to an increase of the bending resistance

of rib fabrics in the warp direction [AMNT00]. Pique knits, on the

other hand, show slightly stiffer stretch properties w.r.t. jersey knits

due to the presence of tuck loops [AG20].

Figure 9 shows the mechanical properties output by the model

for randomly sampled knitted fabrics from the database (sorted by

density) when changing their family, showing good agreement with

the aforementioned effects.

9. Conclusions

We have presented two learning-based methods to estimate the me-

chanical parameters of fabrics without requiring specific testing de-

vices. The first method requires just the metadata of the fabric as
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Ground Truth MECHMET MECHIM Ground Truth MECHMET MECHIM

Figure 12: A dress made with two different materials: a black denim (265gsm, 75% cotton, 25% polyester), and a red interlock (146gsm,
100% modal). Both materials were digitized using capture equipment (Ground Truth) and both of our methods (MECHMET and MECHIM).
The images show how the black and red materials are significantly different from each other, while the three versions (Ground Truth,
MECHMET and MECHIM) of each material are almost identical.

input. The second method removes the need to provide the fabric

family by using planar front and back images of the fabric.

We extensively evaluated both models quantitatively and quali-

tatively, leveraging both common metrics and metrics derived from

the Cusick Test, an industry standard that quantifies fabric drape.

Our analysis shows good performance, yielding similar or im-

proved results compared to a state-of-the-art method that relies on

depth images. In addition, we have validated that our approach can

reproduce complex nonlinear effects of the textile fabrication pro-

cess documented in the scientific literature. These findings support

our initial hypothesis that the fabric metadata contains key informa-

tion regarding the macro-scale mechanical behavior of the fabric.

However, our approach is not free of limitations. We would like

to explore more deeply our family categories to account for a higher

variety of fabrication processes (e.g. adding a higher granularity for

plain or twill categories). In this sense, we would like to include in

our model other fabrication parameters that are known to contribute

to this variability, such as yarn tension during weaving [Sül12], or

applied finishing [EKBSK19, Ery19].

Improving our visual model is another potential area of research

so that we are more robust to variable image quality and able to

implicitly account for some of the effects previously mentioned.

Finally, given the limitations in the sensitivity to stretch of the

Cusick Test, we would like to continue exploring better ways to

evaluate these properties.
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